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SUMMARY

The artificial compressibility algorithm has a significant drawback in the difficulty of choosing the artificial
compressibility parameter, improper choice of which leads either to slow convergence or divergence.
A simple modification of the equation for pressure in the artificial compressibility algorithm which removes
the difficulty of choosing the artificial compressibility parameter is proposed. It is shown that the choice
of the relaxation parameters for the new algorithm is relatively straightforward, and that the same values
can be used to provide robust convergence for a range of application problems. This new algorithm is
easily parallelized making it suitable for computations such as direct numerical simulation (DNS) which
require the use of distributed memory machines. Two key benchmark problems are studied in evaluating
the new algorithm: DNS of a fully developed turbulent channel flow, and DNS of a driven-cavity flow,
using both explicit and implicit time integration schemes. The new algorithm is also validated for a more
complex flow configuration of turbulent flow over a backward-facing step, and the computed results are
shown to be in good agreement with experimental data and previous DNS work. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The pressure–velocity coupling in the solution of the unsteady incompressible Navier–Stokes equa-
tions has long been a computationally expensive part of the solution process. The basic problem
is that of determining an equation to solve for pressure. Within the framework of finite differ-
ences there have historically been four approaches. Each approach (briefly described below) has
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specific advantages and disadvantages. Their use has been dictated by the application at hand, and
the preference of the user. In this paper we focus attention on the artificial compressibility and
symmetric coupled Gauss Seidel (SCGS) algorithms. For acceptable performance, the artificial
compressibility algorithm requires time consuming trial and error adjustment of the artificial com-
pressibility parameter by experienced users. This aspect of the artificial compressibility algorithm
is likely the reason why few, if any, commercial packages for solving the Navier–Stokes equations
use the algorithm. This trial and error adjustment of the artificial compressibility parameter is
particularly expensive for large-scale computations such as direct numerical simulations (DNS).
A new algorithm which eliminates the problem of choosing the artificial compressibility parameter
is proposed. The goal is to modify the artificial compressibility algorithm so that it does not require
time consuming trial and error adjustment of the artificial compressibility parameter while retaining
its ease of parallelization.

The first and most common approach for obtaining the pressure field have been methods that
involve the solution of a Poisson equation for pressure. Such methods include the fractional step
method [1] and the SIMPLE-type methods [2]. In these methods, an elliptic pressure-Poisson
equation is derived from the momentum and continuity equations. The solution of the resulting
Poisson equation is the greatest computational expense of this class of methods. While mention
is made of these methods, the focus of the present work is on improvements to the artificial
compressibility algorithm and no further mention is made of them.

The second popular approach for incompressible flow calculations is the method of artificial
compressibility [3] which involves the addition of a pseudo time derivative to the equation set. It
can be shown to be the result of low Mach number preconditioning of the compressible Navier–
Stokes equations as the Mach number goes to zero. It is known that the explicit solution of
the compressible Navier–Stokes equations at low Mach numbers is very inefficient [4, 5] due to
the increasing stiffness of the equations as the Mach number is decreased. This is a result of the
increasing ratio of the speed of sound to that of the velocity. To retain stability, increasingly small
time steps are required in order to capture the acoustic waves (i.e. temporal pressure disturbances),
the speed of which increases relative to the convection speed as the Mach number decreases. One
approach to this problem would be to use an implicit method that eliminates the stability restriction
on the time step. The solution of the equations arising from an implicit method would be obtained
by an iterative method, direct methods being too expensive. If the time step needed to accurately
capture the acoustic waves is of the order of that needed for stability for an explicit scheme, and one
was interested in accurately capturing the acoustic waves, then there would be no reason to use an
implicit method, which is more computationally expensive per time step. Therefore, in order to be
computationally efficient, a time step would be chosen such that the convective terms (which have a
substantially larger time scale than the acoustic waves at low Mach numbers) alone are accurately
represented. This time step would be too large to accurately resolve the acoustic waves. As a
result, the computational method of solving the equations cannot capture the physics concerning
the acoustic waves. Each iteration of the iterative method can then be thought of as equivalent to an
iteration in pseudo time. Low Mach number preconditioning introduces a pseudo time derivative
and reduces the effective speed of sound so that the acoustic waves travel at a velocity close to
the convective velocity. The preconditioning clearly must be chosen so that it does not affect the
equations when the pseudo time derivative goes to zero. As in an implicit method, a time step will
be chosen based on the convective terms. This time step will be much larger than that which would
be chosen if the acoustic waves were of interest. Of crucial importance is that the acoustic waves
are not in general resolved in an implicit method or in low Mach number preconditioning because
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the physical time step is far too large to resolve them. Another way of looking at this is that as
the Mach number goes to zero, the governing equations become the incompressible Navier–Stokes
equations which contain no time derivative of pressure. The method of artificial compressibility
introduces a finite speed of sound into the incompressible Navier–Stokes equations which have an
infinite speed of sound. The artificial compressibility algorithm requires the selection of a parameter
which defines the artificially introduced speed of sound. The value of this parameter can vary by
four orders of magnitude depending on the flow and the physical time step. Thus, the optimal value
of this parameter has to be chosen by trial and error, and, given the large range of values that this
parameter can take, several trial solutions must be attempted. Therefore, choosing this parameter
can be a very time consuming task, particularly for large-scale computations using large grids.

The third approach is what is known as direct methods. These methods involve a global coupled
solution of the entire discretized system in matrix form at one step. If an implicit time integration
scheme is used for the convective terms, then iterations must be performed at each time step to
solve the resulting non-linear equations. Direct methods are infeasible for large problems due to
the computational expense of direct solutions of matrices, which scale as n3 where n is the matrix
dimension, i.e. the number of discrete variables.

The fourth approach is the direct application of an iterative method to the discretized system.
There are a wide range of iterative methods suitable for solving the discretized system arising from
the Navier–Stokes equations. The present work concerns the SCGS algorithm [6]. This algorithm,
which is a local smoother for the Navier–Stokes equations on a staggered grid, has advantages and
disadvantages compared to the artificial compressibility algorithm. One important disadvantage is
its inherently serial nature. Most solutions to the unsteady incompressible Navier–Stokes equations
are extremely computationally expensive in terms of spatial and temporal resolution requirements.
For this reason, algorithms that work on vector, and, more importantly, on distributed memory
parallel machines are required. This requirement eliminates the original SCGS algorithm due to its
inherently serial nature. It should be noted that it is possible to implement a version of the SCGS
algorithm which can be parallelized through the use of red–black grid colouring [7]. However, this
places a severe restriction on the problem geometry, since arbitrary collections of multi-block grids
cannot be coloured in such a fashion. A parallel version of SCGS has also been implemented by
Degani and Fox [8], however, their algorithm causes the smoothing properties of the algorithm to
be a function of the number of processors used which is undesirable from a standpoint of code
verification.

This paper describes an algorithm suitable for parallel computations that combines elements of
SCGS and the artificial compressibility algorithm. This work is motivated by the need to improve
the artificial compressibility algorithm in order to find a more robust algorithm for the pressure–
velocity coupling that is suitable for parallel computations. Comparisons are made between the
new algorithm and the artificial compressibility algorithm for two problems using both explicit and
implicit time integration schemes. The algorithms are particularly evaluated from the perspective
of their suitability for the DNS of flows.

2. GOVERNING EQUATIONS AND DISCRETIZATION

2.1. Governing equations

The governing equations of interest in the present work are the non-conservative unsteady three-
dimensional Navier–Stokes equations (Equations (1) and (2)). In the present work, the velocity
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vector is denoted by u, the individual components of which are defined by u= (u, v, w). The term
B is a body force term which, in the present work, is either zero or a constant.

�u
�t

+ u · ∇u = −∇ p + 1

Re
∇2u + B (1)

∇ · u = 0 (2)

2.2. Temporal discretization

In the present work explicit and implicit time integration schemes are used for the convection
and diffusion terms and comparisons are made between the results of both such schemes. The
current time level (i.e. the time level for which the solution is sought) is denoted by the n + 1
superscript. The pressure gradient is always treated implicitly and appears only at the current time
level. The explicit scheme used is the third-order accurate multi-level Adams–Bashford scheme,
given by Equation (3). However, for one problem, flow over a backward-facing step, a second-order
accurate multi-level Adams–Bashford explicit scheme is used, Equation (4)

un+1 − un

�t
= −∇ pn+1 + B + 23
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(
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)
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(
1

Re
∇2un−1−un−1 · ∇un−1

)
+ 5

12

(
1

Re
∇2un−2−un−2 · ∇un−2

)
(3)

un+1−un

�t
= −∇ pn+1+B+3

2

(
1

Re
∇2un−un·∇un

)
−1

2

(
1

Re
∇2un−1−un−1·∇un−1

)
(4)

The implicit scheme used is also third-order accurate in time and is given by

11un+1 − 18un + 9un−1 − 2un−2

6�t
=−∇ pn+1 + B + 1

Re
∇2un+1 − un+1 · ∇un+1 (5)

2.3. Spatial discretization

Equations (1) and (2) are discretized using the finite difference method on a staggered grid on
which each velocity component is defined on a grid shifted one-half cell from the main grid on
which pressure is defined, as shown in Figure 1 in two dimensions for clarity. The staggered grid
is used to avoid the appearance of spurious modes in the pressure field and is analogous to the use
in the finite element method of one order lower shape functions for the pressure than the velocity
to satisfy the Babuska–Brezzi inf–sup condition [9, 10]. Each pressure grid point is surrounded by
six velocity grid points. For a staggered grid, pressure is not needed or defined on non-periodic
boundaries [2]. The pressure gradient and continuity equation are represented by second-order
centred schemes. The number of points in all schemes is retained as a non-periodic boundary is
approached. This is done by keeping the number of points in the stencil constant while shifting
towards the boundary the point at which the derivative is evaluated; this maintains the formal
order of accuracy of the stencils near boundaries. For a centred scheme, this results in moving
from a centred stencil to one that is biased away from the boundary. Note that for the second
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Figure 1. Staggered grid and mass conservation cell (shaded).

derivative centred stencils for the diffusive terms, this biasing reduces the formal order of accuracy
by one on an uniform grid. The overall spatial accuracy of the discretization scheme used to solve
Equations (1) and (2) is determined by the lowest order finite differences used and is therefore
second order accurate. Further details of the finite difference schemes and the computer code used
in the present work are given in [7]. All simulations are done in double precision. Different spatial
discretization schemes for the convective and diffusive terms are used for the explicit and implicit
time integration schemes. In the present work the subscript indices i, j, k refer to the grid points
on a three-dimensional finite difference grid.

2.3.1. Spatial discretization of convective and diffusive terms, implicit time integration. The con-
vective terms are discretized using the four point upwind-biased stencil given by Equation (6),
where the c’s are the finite difference weights which depend on the location of the grid points. On
an uniform grid Equation (6) has third order accuracy

�u
�x

∣∣∣∣
i, j,k

= c+x
i,−2ui−2, j,k + c+x

i,−1ui−1, j,k + c+x
i,0 ui, j,k + c+x

i,+1ui+1, j,k if (ui, j,k)�0 (6)

Due to the staggered grid, each velocity component is stored on a different grid. However, at
each velocity grid point the other two velocities are needed in order to compute the terms
uv�u/�y, uw�u/�z, vu�v/�x, vw�v/�z, wu�w/�x, wv�w/�y, where the prescripts indicate the
grid on which the velocities are needed. These velocities (uv, uw, vu, vw, wu, wv) are obtained
by fourth-order accurate two-dimensional Lagrange interpolation (see [7] for details). A five point
fourth-order accurate (on an uniform grid) central difference scheme is used for the diffusive terms.

For use in the explanation of the numerical method a detailed description of the spatial dis-
cretization is given. In the following, the discretization of the terms in the momentum equations
which contain velocity are described by E and G which are defined over each of the three different
velocity grids; i.e. 1E , 2E , 3E are defined on the grids on which u, v, w are defined, respectively.
For brevity, only the component of E and G corresponding to the x momentum equation is shown.
All terms which contain velocity in the discretized x momentum equation away from non-periodic
boundaries are given by Equation (7). In Equation (7), dx , dy , dz are the finite difference weights
of the diffusive scheme in the x, y, z directions, respectively, and c±x , c±y , c±z are the finite
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difference weights of the upwind (+) and downwind (−) convective schemes in the x, y, z
directions, respectively.

2.3.2. Notation. In the present work, square brackets [ ] denote functional dependence, while
parenthesis ( ) denote multiplication. That is, a[b+c] means a is a function of b+c, while a(b+c)
means a times b + c

1Ei, j,k = 0= 11un+1
i, j,k − 18uni, j,k + 9un−1

i, j,k − 2un−2
i, j,k

6�t
− 1B

− dxi,−2u
n+1
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n+1
i, j,k − dxi,+1u
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− dy
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n+1
i, j,k + c+z
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n+1
i, j,k+1)
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n+1
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where if (a>0)�+[a]= a; else; �+[a]= 0 and if (a�0)�−[a] = a; else; �−[a] = 0.
Collecting all terms which multiply the velocity un+1

i, j,k at the grid point where 1Ei, j,k defined,

the coefficient that multiplies un+1
i, j,k can be defined as

1Gi, j,k = 11

6�t
− dxi,0 − dy

j,0 − dzk,0 + (�+[un+1
i, j,k]c+x

i,0 +�−[un+1
i, j,k]c−x

i,0

+ �+[uvn+1
i, j,k]c+y

j,0 + �−[uvn+1
i, j,k]c−y

j,0 + �+[uwn+1
i, j,k]c+z

k,0 + �−[uwn+1
i, j,k]c−z

k,0)

The other two components of E and G can be obtained in a similar fashion by appropriate permu-
tation of the velocity components and directions.

2.3.3. Spatial discretization of convective and diffusive terms, explicit time integration. A seven
point central difference scheme is used for the derivatives in the convective terms; on an uniform grid
the scheme has sixth-order accuracy. A monotonic limiter is applied to the convection scheme, for
details see [7]. Sixth-order accurate two-dimensional Lagrange interpolation is used to interpolate
the velocities (uv, uw, vu, vw, wu, wv) needed in computing the terms uv�u/�y, uw�u/�z, vu�v/�x,
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vw�v/�z, wu�w/�x , wv�w/�y. A seven point sixth-order accurate (on an uniform grid) cen-
tral difference scheme is used for the diffusive terms. For the explicit time integration scheme
E=un+1�t−1 − B + !n , where !n contains the convective and diffusive terms at the previous
time steps, and G=�t−1.

With the definitions of the arrays E and G another array F=E − Gun+1 can be defined which
depends weakly (for implicit time integration) or not at all (for explicit time integration) on the
discrete velocity at the n + 1 time step at the grid point where F is defined.

3. ARTIFICIAL COMPRESSIBILITY

This method was first proposed by Chorin [3], who used it to solve the steady incompressible
Navier–Stokes equations. It has since been used by other researchers [11–19] to solve unsteady
flows. It consists of the addition of an artificial time derivative to the momentum and continuity
equations. The resulting system of equations is given by

�u
��

+ �u
�t

+ u · ∇u = −∇ p + 1

Re
∇2u + B (8)

�p
��

+ �(∇ · u) = 0, �>0 (9)

These equations are advanced in the artificial time dimension (pseudo time, �) until the artificial
time derivative goes to zero. When this happens the solution of Equations (1) and (2) is recovered.
For an unsteady problem this must be done every time step. Because the continuity equation does
not contain pressure, it is introduced by defining an artificial equation of state, p= �� (where �
is the artificial compressibility parameter), which results in the definition of an artificial speed of
sound

√
�. At first sight, it might appear that � is relatively easy to choose. For instance,

√
� could

be chosen to be equal to some representative convective velocity as in [15]. It is also possible for√
� to not be a constant over the entire flow field, but instead to be chosen to be equal to a local

velocity [20]. Computational experience has shown [12, 13, 17] that this is not the case, and that
� can vary from 1 to 10 000 depending on the flow and the pseudo and physical time steps. It has
been shown that for unsteady flows � is strongly a function of the physical time step [11, 17]. If all
else is kept constant, as � is increased a smaller pseudo time step must be taken and the ratio of
the momentum residuals to the residual of the continuity equation increases. Since time accuracy
in pseudo time is of no concern, the time derivatives in Equations (8) and (9) should be discretized
using methods chosen to maximize efficiency and robustness. Local time stepping, in which the
equation is advanced at different rates in pseudo time depending on spatial position, can be used.
This improves the convergence rate by not restricting the global pseudo time step to the minimum
required locally.

3.1. Velocity

The momentum equations (Equation (1)) are represented in discretized form by

F + Gun+1 + ∇ pn+1 = 0 (10)

In Equation (10), F contains the convection and diffusion terms, source terms and all parts of the
time derivative at previous levels. Note that if the explicit time integration schemes (Equations (3)
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or (4)) are used then F does not depend on un+1. The pseudo time derivative term is now added to
the momentum equations resulting in

�u
��

+ F + Gun+1 + ∇ pn+1 = 0 (11)

This pseudo time derivative term is represented by the first order accurate expression in
Equation (12) where the index m indicates the pseudo time level.

un+1,m+1 − un+1,m

��
+ Fm + Gmun+1,m + ∇ pn+1,m = 0 (12)

3.1.1. Local time stepping. Define a local time step �� by Equation (13), where � is an under-
relaxation factor

�� = �

Gm
(13)

Substituting the above definitions in Equation (12) results in

un+1,m+1 =−(Fm + Gmun+1,m + ∇ pn+1,m)
�

Gm
+ un+1,m

Rewriting

un+1,m+1 =−(Fm + ∇ pn+1,m)
�

Gm
+ (1 − �)un+1,m (14)

It can now be seen that this choice of time step is equivalent to Jacobi iteration with an under-
relaxation factor of �. It is local time stepping because the pseudo time step is a function of the
velocity and the spatial location. Other choices (such as a constant time step for the entire spatial
domain) can be made for the time step. However, the use of a constant time step results in different
under-relaxation factors across the spatial domain which is inefficient as some regions will have
low under-relaxation factors. Note that while the local time stepping destroys time accuracy, there
is no reason to be concerned with accuracy in pseudo time as it has no physical meaning; it is
merely a means to obtain a solution. Note that if the convection and diffusion terms are integrated
explicitly in physical time, then G=�t−1 and the local time step is not local but is a constant over
the entire spatial domain. If the time differencing is implicit then there is sometimes an advantage
to freezing the evaluation of the implicit part of the computationally expensive convection and
diffusion terms. Sub-cycling (not done in the present work) is then used to solve for pressure and
velocity without recomputing the implicit part of the convection and diffusion terms. Note that for
the implicit scheme, Gm in Equation (14) depends on the solution and it may be computationally
efficient to perform the computationally expensive division operations required by �/Gm only at
some subset of time steps. In the present work, the under-relaxation parameters for the momentum
equations are referred to as �u, �v, �w.

3.2. Pressure

If an explicit first order method is used to discretize Equation (9) in pseudo time, the resulting
equation for pressure is given by

pn+1,m+1 =−�(∇ · un+1,m+1)�� + pn+1,m (15)
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As the grid is staggered and therefore the locations of the discrete pressure do not coincide with that
of the discrete velocity locations on which the pseudo time step is defined, the pseudo time step in
Equation (15) is chosen as the average of the six pseudo time steps in Equation (13) corresponding
to the six velocity points surrounding each pressure location. This leaves � to be chosen. The choice
of � greatly affects the convergence rate; a too large value of � will result in a non-convergent
solution, while a too small value greatly slows convergence. In practice, the difficulty of choosing
� is a severe drawback of the method.

4. SCGS

First proposed by Vanka [6], SCGS is an iterative method for solving Equations (1) and (2) on
a staggered grid without needing to derive and solve a Poisson equation for the pressure. In the
present work the SCGS algorithm is used to solve for the change in velocity and pressure at each
iteration. To derive these equations, the discretized version of Equations (1) and (2) can be written
in the following general non-linear matrix form:

H [q]q= s

where q is the vector of all discrete variables (un+1, vn+1, wn+1, pn+1) over the entire computational
domain, H represents the discretized differential operator for the Navier–Stokes equations which
in general is a function of q, and s is a source term. The residual R that results from an initial
guess q∗ can be written as

R = H [q∗]q∗ − s = H [q∗][q − �q] − s = H [q∗]q − s − H [q∗]�q where �q + q∗ = q

By definition H [q]q−s = 0. Since the intention is to use the procedure iteratively, the assumption
that H [q∗] = H [q] can be made. This results in the residual form given below

H [q∗]�q=−R (16)

It is permissible to change H [q∗] when used in Equation (16). For instance, if H [q∗] is replaced by
H̃ [q∗], a zero residual would result in �q= 0 if H̃ [q∗] is a linearly independent matrix. Of course
there is no guarantee that the sequence of iterates resulting from using H̃ [q∗] instead of H [q∗] will
be a convergent sequence. This ability to modify the iteration matrix will be taken advantage of
when certain off-diagonal terms are dropped from the matrices that describe the pressure–velocity
coupling of some of the algorithms in the present work. Note that if an explicit time integration
scheme is used for the convective terms in Equation (1) then H does not depend on q. In this case,
no approximation is involved in writing in residual form if all the terms in H are maintained.

The SCGS algorithm involves the coupling of the six momentum equations that surround a pres-
sure location plus the continuity equation at that location. Referring to pi, j in Figure 1 which shows
a two-dimensional schematic for simplicity, if an explicit formulation is used for the convective
and diffusive terms, the equations for the six velocities surrounding pi, j , along with the continuity
equation at that same location, can be written in residual form as Equation (18). Note that because
the convective and diffusive terms are integrated in time using an explicit scheme, no terms have
been dropped or approximated in Equation (18). The residuals of the momentum and continuity
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equations are defined by Equation (17); �xui , �yv
j , �z

w
k , �xi , �y j , �zk are defined in Figure 1.

Ui, j,k = 1Fi, j,k + 1Gi, j,ku
n+1
i, j,k + pn+1

i+1, j,k − pn+1
i, j,k

�xi

Vi, j,k = 2Fi, j,k + 2Gi, j,ku
n+1
i, j,k + pn+1

i, j+1,k − pn+1
i, j,k

�y j

Wi, j,k = 3Fi, j,k + 3Gi, j,ku
n+1
i, j,k + pn+1

i, j,k+1 − pn+1
i, j,k

�zk

Di, j,k = un+1
i, j,k − un+1

i−1, j,k

�xui
+ vn+1

i, j,k − vn+1
i, j−1,k

�yv
j

+ wn+1
i, j,k − wn+1

i, j,k−1

�zwk

(17)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1Gi−1, j,k 0 0 0 0 0
1

�xi

0 1Gi, j,k 0 0 0 0
−1

�xi

0 0 2Gi, j−1,k 0 0 0
1

�y j

0 0 0 2Gi, j,k 0 0
−1

�y j

0 0 0 0 3Gi, j,k−1 0
1

�zk

0 0 0 0 0 3Gi, j,k
−1

�zk

−1

�xui

1

�xui

−1

�y j

1

�y j

−1

�zk

1

�zk
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ui−1, j,k

�ui, j,k

�vi, j−1,k

�vi, j,k

�wi, j,k−1

�wi, j,k

�pi, j,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ui−1, j,k

Ui, j,k

Vi, j−1,k

Vi, j,k

Wi, j,k−1

Wi, j,k

Di, j,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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Equation (18) can be solved, at each pressure location, for the changes in the six velocities and
the change in pressure. However, as one moves from one pressure location to the next pressure
location solving the matrix equation, one will have two solutions for each interior velocity. If one
solves the matrix equation at main grid point (i, j, k) one will get a value for �ui−1, j,k , �ui, j,k ,
�vi, j−1,k , �vi, j,k , �wi, j,k−1, �wi, j,k and �pi, j,k . If one then solves the equation at main grid
point (i + 1, j, k) one will get a value for �ui, j,k , �ui+1, j,k , �vi+1, j−1,k , �vi+1, j,k , �wi+1, j,k−1,
�wi+1, j,k and �pi+1, j,k . The result is that one will then have two different values for �ui, j,k .
All attempts by the authors to combine these two values have been highly unstable. The original
SCGS algorithm did not have this problem because, when solving the equation at main grid point
(i + 1, j, k) in Figure 1, it used the previously computed value of ui, j,k to recompute the residuals.
As a result, as one swept across the grid, one solved for each velocity twice but always used or
kept the last one. Depending on the direction i, j or k that one sweeps across the grid while solving
for the velocities and pressure, one gets a different answer. Unfortunately, SCGS is sensitive to
the direction in which sweeps are made. Making a sweep in the direction opposite to the main
velocity component can be unstable and presents a problem in recirculating flows. The algorithm
does have the advantage of easy-to-choose under-relaxation parameters for the changes in velocity
and pressure; the authors have used ∼ 0.9 to solve very different flow problems, while others
[21, 22] have used values in the range (0.2↔ 0.75). A more serious defect is that it is an inherently
serial algorithm. Note that one could use SCGS separately in parallel in each domain as assigned
to each processor. One could then use some method of combining the two different solutions
obtained for the velocity field at processor domain boundaries. This has not been explored in the
present work. One reason is that an instability may occur at processor domain boundaries, similar
to the one experienced when trying to combine the two different solutions obtained for the velocity
field at all interior points. As the number of processors increases, the number of points at which
some special treatment would be needed to combine the two solutions also increases. Indeed,
in the limit as the number of processors approaches the number of main grid points, the highly
unstable situation of having two different values for �ui, j,k is approached. With this approach,
the solution (since the iterative process is a function of the number of processors) and even worse
the stability of the iterative process would depend on the number of processors used to obtain
it. These are highly undesirable features of any numerical algorithm as it makes it essentially
impossible to verify that the algorithm as implemented in software and hardware is correct. Using
the code and algorithms in the present work, the authors have verified that it is possible to obtain
a solution on one processor that is binary identical to one obtained from using multiple processors
in parallel.

However, if we consider using Equation (18) to solve only for pressure we can see that we do
not have these problems. The pressure at each main grid point can be uniquely determined in a
completely parallel fashion independent of neighbouring pressures. Therefore, one can use SCGS
to solve only for pressure and some other method (pseudo time stepping or relaxation) to solve for
the velocity. This is the main idea behind the following new algorithm. While the derivation of the
SCGS algorithm used an explicit time integration scheme for the convection and diffusion terms,
the previous discussion also applies if an implicit time integration scheme is used for these terms.

5. NEW ALGORITHM, SCGS-PP

The idea for symmetric coupled Gauss Seidel parallel pressure (SCGS-PP) comes from combining
elements of SCGS and artificial compressibility. The artificial compressibility algorithm is easily
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parallelized but, as noted earlier, contains the hard-to-choose artificial compressibility parameter �.
The SCGS algorithm is inherently serial but has easy-to-choose relaxation parameters. The SCGS-
PP algorithm is derived by replacing the equation for pressure in the artificial compressibility
algorithm with the equation for pressure of the SCGS algorithm while keeping all other aspects of
the artificial compressibility algorithm the same. In the resulting algorithm both the solution of the
pressure and the velocity can be easily parallelized.

5.1. Explicit time integration of convective and diffusive terms

Solving Equation (18) for �pi, j,k results in

�pi, j,k = −�i, j,k Di, j,k − �i, j,k
1Gi−1, j,k�xui

Ui−1, j,k + �i, j,k
1Gi, j,k�xui

Ui, j,k − �i, j,k
2Gi, j−1,k�yv

j
Vi, j−1,k

+ �i, j,k
2Gi, j,k�yv

j
Vi, j,k − �i, j,k

3Gi, j,k−1�zwk
Wi, j,k−1 + �i, j,k

3Gi, j,k�zwk
Wi, j,k (19)

where

�i, j,k =

⎛
⎜⎜⎜⎜⎝

1
1Gi−1, j,k�xui �xi

+ 1
1Gi, j,k�xui �xi

+ 1
2Gi, j−1,k�yv

j�y j

+ 1
2Gi, j,k�yv

j�y j
+ 1

3Gi, j,k−1�zwk �zk
+ 1

3Gi, j,k�zwk �zk

⎞
⎟⎟⎟⎟⎠

−1

The equation for the change in pressure leads immediately to an equation for pressure, Equation (20).
In practice it is frequently necessary to apply an under-relaxation parameter (�p) to�pi, j,k in order to
achieve convergence; this is discussed in the Results section. The artificial compressibility algorithm
is now modified by replacing just the equation for pressure (Equation (15)) with Equation (20).

pn+1,m+1
i, j,k =�p

⎛
⎜⎜⎜⎜⎝
−�i, j,k Di, j,k−

�i, j,k
1Gi−1, j,k�xui

Ui−1, j,k+
�i, j,k

1Gi, j,k�xui
Ui, j,k−

�i, j,k
2Gi, j−1,k�yv

j
Vi, j−1,k

+ �i, j,k
2Gi, j,k�yv

j
Vi, j,k−

�i, j,k
3Gi, j,k−1�zwk

Wi, j,k−1+
�i, j,k

3Gi, j,k�zwk
Wi, j,k

⎞
⎟⎟⎟⎟⎠

+ pn+1,m
i, j,k (20)

5.2. Implicit time integration of convective and diffusive terms

As a result of the convective and diffusive terms, additional elements (indicated by ∗) on the off-
diagonals arise in the matrix (Equation (21)) which describe the coupling between the six velocity
points and pressure. Note that if implicit time integration of the convective terms is not used, then
the additional elements depend only on the grid and time step. Otherwise, the additional elements
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will also depend on the solution, as a result of the non-linearity of the convective term.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1Gi−1, j,k ∗ 0 0 0 0
1

�xi

∗ 1Gi, j,k 0 0 0 0
−1

�xi

0 0 2Gi, j−1,k ∗ 0 0
1

�y j

0 0 ∗ 2Gi, j,k 0 0
−1

�y j

0 0 0 0 3Gi, j,k−1 ∗ 1

�zk

0 0 0 0 ∗ 3Gi, j,k
−1

�zk

−1

�xui

1

�xui

−1

�y j

1

�y j

−1

�zk

1

�zk
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ui−1, j,k

�ui, j,k

�vi, j−1,k

�vi, j,k

�wi, j,k−1

�wi, j,k

�pi, j,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ui−1, j,k

Ui, j,k

Vi, j−1,k

Vi, j,k

Wi, j,k−1

Wi, j,k

Di, j,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

These additional terms make it cumbersome to obtain an analytical expression for �pi, j,k as
was done for the case of the explicit convection and diffusion scheme. However, an expression for
�pi, j,k can be obtained by using the appropriate row of the inverted matrix in Equation (21) to
form a linear combination of the residuals. Once this matrix inversion has been done, the amount of
computational work needed to determine �pi, j,k is the same as for the case of explicit convection
and diffusion. Note that as the general procedure involves solving for the changes in the velocity
and pressure, it may be possible to change the matrix in Equation (21) and still obtain a solution. In
particular the inclusion of the additional elements on the off-diagonals arising from the convection
and diffusion schemes is found to make little difference in the rate of convergence and hence
these elements are not used in the present work. For the SCGS algorithm, this unimportance of the
off-diagonals has been reported by others [21, 22]. When these off-diagonals terms are dropped
the left-hand side of Equation (21) differs from Equation (18) only in the centre coefficients
(1Gi−1, j,k,

1 Gi, j,k,
2 Gi, j−1,k,

2 Gi, j,k,
3 Gi, j,k−1,

3 Gi, j,k), which in Equation (21) are a function of

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:307–345
DOI: 10.1002/fld



320 F. MULDOON AND S. ACHARYA

Table I. Side-by-side comparison of algorithms.

Artificial compressibility SCGS-PP

Solve for velocity

un+1,m+1 = (Fm − ∇ pn+1,m) �
Gm + (1 − �)un+1,m

Solve for pressure

pn+1,m+1
i, j,k = −�Dn+1,m+1

i, j,k �� + pn+1,m
i, j,k pn+1,m+1

i, j,k = �p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�i, j,k D
n+1,m+1
i, j,k

−�i−1, j,kUi−1, j,k(un+1,m+1, pn+1,m)

−�i, j,kUi, j,k(un+1,m+1, pn+1,m)

−�i, j−1,kVi, j−1,k(un+1,m+1, pn+1,m)

−�i, j,kVi, j,k(u
n+1,m+1, pn+1,m)

−	i, j,k−1Wi, j,k−1(un+1,m+1, pn+1,m)

−	i, j,kWi, j,k(un+1,m+1, pn+1,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ pn+1,m
i, j,k

Repeat until convergence

the solution, the grid and �t , while in Equation (18) they equal �t−1. This ability to modify the
matrix can be used for computational efficiency if an implicit convection scheme is used. In this
case, even if the off-diagonal terms are dropped, the matrix will depend on the solution. However,
it has been observed that it is not necessary to perform the matrix inversion at every iteration. It
is more efficient computationally to perform the matrix inversion only at certain time steps and
obtain a representative inverted matrix.

A comparison of the two algorithms is given in Table I. Note that the momentum equation
residuals in the SCGS-PP algorithm depend on pn+1,m and not pn+1,m+1. As a result the algorithm
can be parallelized easily. The new algorithm has replaced the problem of choosing � with that
of choosing �p. It will be shown that it is much easier to choose �p and that in addition the new
algorithm has better convergence properties.

6. FOURIER MODE ANALYSIS

An important method of evaluating the properties of an iterative scheme is the Fourier mode
analysis. The basic idea is to represent the error as a Fourier series and examine the effect of the
iterative scheme in Fourier (frequency) space.

Any stationary iterative scheme to solve Au = b can be written as

C(um+1 − um) = b − Aum or um+1 =C−1(b + (C − A)um) =C−1b + (I − C−1A)um

where m is the iteration count.
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Defining the current approximation to the solution um as um = 
m + u, where 
m is the error,
u is the exact solution, and substituting results in


m+1 + u =C−1b + (I − C−1A)(
m + u) =C−1b + I 
m − C−1A
m + I u − C−1Au

=C−1(b − Au) + (I − C−1A)
m + I u

As Au = b this reduces to


m+1 = (I − C−1A)
m

Therefore, the behaviour of the error is a function only of the matrix (I − C−1A) and does not
depend on the right-hand side vector b. Any grid function (e.g. the solution ui, j,k or the error 
i, j,k)
can be written as [23]

ui, j,k =
Nz−1∑
kz=1

Ny−1∑
ky=1

Nx−1∑
kx=1

akx ,ky ,kz sin

(
i�kx
Nx

)
sin

(
j�ky
Ny

)
sin

(
k�kz
Nz

)
(22)

where

akx ,ky ,kz =
Nz−1∑
k=1

Ny−1∑
j=1

Nx−1∑
i=1

ui, j,k sin

(
i�kx
Nx

)
sin

(
j�ky
Ny

)
sin

(
k�kz
Nz

)
(23)

An analysis of how iterative schemes affect the Fourier spectrum can now be made by comparing
the resulting Fourier coefficients of the error with those of the original error. Of particular interest
is the ratio of the magnitude of the resulting Fourier coefficients to the original Fourier coefficients,
at each frequency or wave number. This is known as the smoothing factor and is given by

�mkx ,ky ,kz =
∣∣∣∣∣∣
amkx ,ky ,kz

aoriginalkx ,ky ,kz

∣∣∣∣∣∣ where m ∈ [1, ∞) is the iteration index (24)

6.1. Model problem

A model problem is constructed with Dirichlet boundary conditions of u= 0 on the boundary �.
No boundary conditions are needed for pressure. The initial conditions at the previous time steps
are u= 0. Pressure is treated fully implicitly and therefore no initial conditions are needed for it.
The solution to this problem is u= 0 in the interior and pressure equal to a constant. As a result,
the intermediate solution at any point in the iterative process is the error. Since there is no error
on �, the error is defined only in the interior. As regards the discrete grid this means that the error
is defined from the first to the last grid point in each coordinate direction excluding those points
that lie on �. An error field is generated by the use of Equation (22) with akx ,ky ,kz = 1 for the
velocity and pressure. This error is imposed as an initial guess at the current time step and the
iterative scheme is applied a number of times. The resulting velocity and pressure field (which is
the error field) is then transformed to Fourier space by the use of Equation (23). As the pressure
can only be determined up to a constant, it must be treated slightly differently from the velocity.
After using Equation (22) with akx ,ky ,kz = 1 to generate a pressure field, a constant is added to the
field such that the pressure at one point is zero. The resulting field is then transformed to Fourier
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Figure 2. Isosurfaces of �u and �p of model problem on a 16× 16× 16 grid.

space by the use of Equation (23) and stored. After applying the iterative algorithm, the resulting
pressure field is adjusted by a constant so that the pressure at the same point is zero. This pressure
field is then transformed to Fourier space at which point Equation (24) can be used.

6.2. Model problem results

Figure 2 shows isosurfaces of the smoothing factor for u and p as a function of wave number space
for the algorithms. As expected for methods that involve local smoothing, both algorithms show
the highest value of the smoothing factor (Equation (24)) at low wave numbers (near the origin in
wave number space). The artificial compressibility algorithm has higher smoothing factors for both
u and p compared to the SCGS-PP algorithm. Figure 3 shows the maximum smoothing factors
as a function of iteration number. The maximum smoothing factors of both u and p are smaller
with SCGS-PP than artificial compressibility. Figure 4 shows the residual as a function of iteration
number, with both the average and the maximum residuals decaying faster with SCGS-PP than
with artificial compressibility.
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Figure 5. Channel flow schematic showing wall jets used to trigger turbulence at the
start of the simulation. Wall jets are shut off after flow has travelled 12.4h based on the

bulk velocity and the channel half height h.

7. RESULTS

In this section, the artificial compressibility and SCGS-PP algorithms are evaluated by applying
them to the DNS of a channel and a driven-cavity flow. In addition, the SCGS-PP algorithm is used
for the DNS of flow over a backward-facing step. Note that the residual of the continuity equation
is defined by the last equation of Equation (17).

7.1. DNS of channel flow

7.1.1. Problem description. A channel flow at a Reynolds number of 180 is simulated. The flow is
driven by a constant body force term which is added to the x momentum equation. All quantities

are non-dimensionalized by the channel half height h and the friction velocity uf =
√

��u/�y|y=0.
A schematic of the flow domain along with boundary conditions and dimensions is given in Figure 5.
The computational domain is 6.4 units in the streamwise direction (x), 2 units in the wall normal
direction and 3.2 units in the cross-stream direction (z). The grid dimensions are 128× 128× 128.
Evenly spaced grids are used in the x and z directions, with grid spacings in wall units of 9 and 4.5,
respectively. A stretched grid that concentrates points near the two walls is used in the y direction.
The first three main grid points in wall units are at 0.716, 2.158 and 3.671 from the wall in the
y direction. The maximum grid spacing in wall units in y is 5.04 (at the channel centre line). It
has been shown [24] that this resolution is sufficient for this Reynolds number. It is necessary to
use a method to trigger turbulence for this particular flow. The method used in the present work
is to place two rows of wall jets on the top and bottom walls, see Figure 5. These wall jets either
injected or removed fluid from the domain depending on their spatial location. The net sum of mass
injected into the domain was approximately zero. These wall jets were turned on until the flow
(based on the bulk velocity) had travelled 12.4h (2232 wall units), after which they were turned
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Table II. Channel flow time step and numerical parameters, explicit time integration scheme.

Case Time step and numerical parameters Notes

Case 1 Artificial compressibility, �t = 0.00005, �= 4000, �u = �v = �w = 0.915 Optimal value of �
Case 2 Artificial compressibility, �t = 0.00005, �= 400, �u = �v = �w = 0.915 Non-optimal value of �
Case 3 Artificial compressibility, �t = 0.00015, �= 400, �u = �v = �w = 0.915 Optimal value of �
Case 4 SCGS-PP, �t = 0.00005, �p = �u = �v = �w = 0.925
Case 5 SCGS-PP, �t = 0.00015, �p = �u = �v = �w = 0.925

off. The calculations then proceeded until the flow (based on the bulk velocity) travelled a further
14.6h (4860 wall units) to allow the transients caused by the jets to decay and the turbulence to
become fully developed. After this the simulation was advanced in time until the flow (based on the
bulk velocity) has travelled a further 108h (19 440 wall units). In addition, as an initial condition,
the u velocity is set to the bulk velocity, the v velocity at each interior point is set to a random
number between −2 and 2 (to aid in triggering turbulence) and the w velocity is set to zero.

7.1.2. Explicit time integration scheme results. Two different time steps (�t = 0.00015 and 0.00005)
are used to demonstrate the effect of the time step on the various numerical parameters that are
required for the artificial compressibility and SCGS-PP algorithms. Both of these time steps are
well within the range needed to accurately resolve the turbulent fluctuations of this particular
flow [25, 26]. For this flow the time step of 0.00015 corresponds to a maximum CFL number of
approximately 0.0645 based on the u velocity and grid spacing in the x direction; the CFL num-
bers based on the other two directions being smaller. Table II shows the numerical parameters
used for both algorithms. In Cases 1 and 3 the value of � required by the artificial compressibility
algorithm was chosen using a trial and error method in which � was continually increased until
an instability sets in, causing the solution to diverge. At that point � was decreased somewhat and
this value, which is considered to be optimal, was used for the simulation. The consequences of
not choosing an optimal value of � are shown later; one of the consequences is that the solution
diverges. In general, the simulation had to be integrated for a few hundred physical time steps
in order to determine whether the solution was diverging. The value of � found is considered
optimal, considering the constraints of the author’s time involved in performing the trial and error
simulations, approximately 10 of which were done in order to find each optimal value of �. The
choice of the parameters �p, �u, �v, �w required by the SCGS-PP algorithm was made simply by
using values that have been used by the authors in solving other flows, such as jets in cross-flow
and flow over spheres and cylinders. Case 2 is included to demonstrate the effect of using a value
of � that is optimal for a time step of �t = 0.00015 for a simulation for which a smaller time
step of �t = 0.00005 is used. A different value of � = 4000, is optimal for this lower time step of
�t = 0.00005. Using �= 4000 for a simulation with a larger time step of �t = 0.00015, results in
a diverging solution. Ten iterations were used for a time step of �t = 0.00005 and 20 for a time
step of �t = 0.00015.

Residual level: Figure 6 shows the history as a function of time of the average residual of the
continuity equation at a time step of �t = 0.00005. This is defined by the arithmetic mean of the
absolute value of the residual of the continuity equation at every pressure grid point. It is observed
that for the artificial compressibility algorithm, using the value of � that is optimal for a time step
of �t = 0.00015 for a simulation using a smaller time step of �t = 0.00005 results in a residual
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Figure 6. Average residual of the continuity equation, channel flow, explicit time
integration scheme (Equation (3)), �t = 0.00005.
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Figure 7. Average residual of the continuity equation, channel flow, explicit time
integration scheme (Equation (3)), �t = 0.00015.

level that is an order of magnitude higher than that obtained using the optimal value of � for the
smaller time step. In addition, even if using the optimum value of �, the value of the residual for
the artificial compressibility algorithm is approximately six times larger than that resulting from
the SCGS-PP algorithm. The spike in the graph is the result of turning off the wall jets used to
trigger the transition to turbulence. The same trends exist for the time step of �t = 0.00015, as can
be seen in Figure 7.

Other measures of error: The instantaneous value of v integrated over the entire xz plane at any
location in the y direction is zero as a result of conservation of mass. Figure 8 shows the time
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Figure 8. Spatially averaged v in xz plane, channel flow, explicit time integration
scheme (Equation (3)), �t = 0.00005.

history of this quantity (from an xz plane at y = h). The value of v integrated over the entire xz
plane is positive in the beginning of the simulations because the net mass flow into the domain,
due to the wall jets, is not exactly zero. The sudden changes in Figure 9 are the result of turning
off the wall jets used to trigger turbulence, after which the value quickly begins to oscillate around
the correct value of zero. It can be seen that the errors in this quantity take a significantly longer
time to decay for the artificial compressibility algorithm, particularly if a non-optimized value of
� is used. Note that the artificial compressibility algorithm, even when using the optimal value
of �, performs significantly worse than the SCGS-PP algorithm.

Statistics: In order to characterize turbulent flows it is necessary to collect statistics that are
the result of time averaging various quantities. As the flow field is homogenous in the x and z
directions, spatial averaging is carried out in both these directions. Statistics are collected at each
time step after the flow (based on the bulk velocity) has travelled 27h (4860 wall units), at which
point the transients caused by the jets have decayed and the turbulence has become fully developed.
After this point, statistics are collected over a length of time in which the flow (based on the bulk
velocity) travels 108h (19 440 wall units). Figure 10 compares the only (for this flow) non-zero
non-normal turbulent Reynold’s stress of the present work with that of [27, 28]. The results of the
present work compare quite well. Due to symmetries, there are certain statistical quantities which
are zero for this flow. For instance, the mean value of the velocity v in the wall normal direction
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Figure 9. Temporally and spatially averaged v, channel flow, explicit time
integration scheme (Equation (3)), �t = 0.00005.

should be zero. Figure 9 shows the mean v at a time step of �t = 0.00005. It can be seen that the
artificial compressibility algorithm in general results in larger errors. The use of a non-optimized
value of � results in significantly larger errors.

7.1.3. Implicit time integration scheme results. Two different time steps, �t = 0.0015 and 0.0005,
are used to demonstrate the effect of the time step on the numerical parameters that are required
for the algorithms. Both of these time steps are within the range needed to accurately resolve
the turbulent fluctuations of this particular flow [25, 26]. For this flow the time step of 0.0015
corresponds to a maximum CFL number of approximately 0.64 based on the u velocity and grid
spacing in the x direction; the CFL numbers based on the other two directions being smaller.
Table III shows the numerical parameters used for the algorithms. It is necessary to use smaller
under-relaxation factors for the implicit time integration scheme than for the explicit time integration
scheme. This is because a non-linear system of equations must be solved at each physical time
step if an implicit time integration scheme is used for the convective terms as in Equation (5). In
Cases 10 and 12 the value of � required by the artificial compressibility algorithm was chosen by
the same trial and error method as used for the explicit time integration scheme. As for the explicit
time integration scheme, a few hundred physical time steps were needed to determine whether
the solution was diverging. The choice of the parameters �p, �u, �v, �w required by the SCGS-PP
algorithm was made simply by using values that the authors have used in the past for other flows,
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Table III. Channel flow time step and numerical parameters, implicit time integration scheme.

Case Time step and numerical parameters Notes

Case 10 Artificial compressibility, �t = 0.0005, �= 575, �u = �v = �w = 0.4 Optimal value of �
Case 11 Artificial compressibility, �t = 0.0005, �= 125, �u = �v = �w = 0.4 Non-optimal value of �
Case 12 Artificial compressibility, �t = 0.0015, �= 125, �u = �v = �w = 0.4 Optimal value of �
Case 13 SCGS-PP, �t = 0.0005, �p = 0.225, �u = �v = �w = 0.8
Case 14 SCGS-PP, �t = 0.0015, �p = 0.225, �u = �v = �w = 0.8

such as jets in cross-flow and flow over spheres and cylinders. Case 11 is included to demonstrate
the effect of using the same value of � that is optimal for a time step of �t = 0.0015 for a simulation
for which a smaller time step of �t = 0.0005 is chosen. Using � = 575 (which is optimal for a time
step of �t = 0.0005) for a simulation using a larger time step of �t = 0.0015, results in a diverging
solution. Sixty iterations were used for both time steps. For computational efficiency terms, such
as �/Gm, �i, j,k, �i, j,k/

1Gi, j,k�xui in Equations (14) and (19) which depend on the solution and
involve computationally expensive division operations, are recomputed at the first iteration every
150 time steps.

Residual level: Figure 11 shows the history as a function of time of the average residual of
the continuity equation at a time step of �t = 0.0005. For the artificial compressibility algorithm,
using the value of � that is optimal for a time step of �t = 0.0015 results in a residual level that
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Figure 11. Average residual of the continuity equation, channel flow, implicit time
integration scheme (Equation (5)), �t = 0.0005.
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Figure 12. Average residual of the continuity equation, channel flow, implicit time
integration scheme (Equation (5)), �t = 0.0015.

is somewhat higher than that obtained using an optimal value of � for this time step �t = 0.0005.
The difference, however, is not nearly as great as in the explicit time integration cases. The spike in
the graph is the result of turning off the wall jets used to trigger the transition to turbulence. For both
time steps, a slightly lower residual is obtained using the artificial compressibility algorithm (Figure
12). However, note that this occurs only after using an optimal value of � which was obtained by
a painstaking trial and error process. The reason for the small differences in the residual history
between the algorithms may be due to the fact that at these higher CFL numbers more of the error

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:307–345
DOI: 10.1002/fld



ARTIFICIAL COMPRESSIBILITY ALGORITHM 331

∆t=.0005, β=575

0

-.01

.01

0

-.01

.01

0

-.01

.01

∆t=.0005, β=125

∆t=.0005, SCGS-PP

av
er

ag
e 

v 
in

 x
z 

p
la

n
e

av
er

ag
e 

v 
in

 x
z 

p
la

n
e

av
er

ag
e 

v 
in

 x
z 

p
la

n
e

1 2 3 4 5 6 7
time

1 2 3 4 5 6 7
time

1 2 3 4 5 6 7
time

(a)

(b)

(c)

Figure 13. Spatially averaged v in xz plane, channel flow, implicit time integration
scheme (Equation (5)), �t = 0.0005.

exists in the low wave number range. In this range, the smoothing properties of the algorithms
approach each other for the linear system resulting from explicit time integration as was shown by
the Fourier analysis. It is to be expected that this behaviour also exists for the non-linear system
resulting from implicit time integration. As for the explicit case, using a value of � that is optimal
for a certain time step for the same simulation using a larger time step results in a diverging solution
for the artificial compressibility algorithm.

Other measures of error: Figure 13 shows the time history of the instantaneous value of v

integrated over the entire xz plane at y = h. It can be seen that the errors in this quantity take
significantly longer to decay for the artificial compressibility algorithm, if a non-optimized value
of � is used. If an optimal value of � is used the artificial compressibility algorithm performs as
well as SCGS-PP, however, finding this optimal value of � requires a painstaking trial and error
process even if only the physical time step is changed. Note that no attempt in the present work
is made to tune the values of the under-relaxation factors for the SCGS-PP algorithm for different
values of the time step.

Statistics: All implicit cases were run for the same length of time and had statistics collected
over the same period of time as the explicit cases. Figure 14 shows the mean v for the algorithms
at a time step of �t = 0.0005. As for the explicit cases, using the value of � that is optimal for a
time step of �t = 0.0015 results in significantly greater error than that obtained using the optimal
value of � for this time step of �t = 0.0005.
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Figure 14. Temporally and spatially averaged v, channel flow, implicit time
integration scheme (Equation (5)), �t = 0.0005.

7.2. DNS of driven cavity

A driven-cavity flow at a Reynolds number of 10 000 based on the moving wall velocity and the
cavity height h is simulated. At this Reynolds number the flow is unsteady. The flow is driven by
the movement of the top wall in the positive x direction. All quantities are non-dimensionalized by
h and the velocity of the top wall. A schematic of the flow domain along with boundary conditions
and dimensions is given in Figure 15. The grid dimensions are 64× 64× 64. A stretched grid, in
which the ratio of the maximum grid spacing to the minimum is 5.54, is used to concentrate points
near the walls in all three directions. For the velocity field, the initial conditions for the interior
velocity are that all three components of velocity are set to a random number between − 1

2 and 1
2 .

This is done to observe the transient behaviour of the flow as it reaches a physically realistic state
from the unphysical initial state. The initial condition for pressure is to set it to zero everywhere.

7.2.1. Explicit time integration scheme results. Two different time steps, �t = 0.0012 and 0.0003,
are used to demonstrate the effect of the time step on the numerical parameters of the algorithms.
For this flow, the time step of 0.0012 corresponds to a maximum CFL number of approximately
0.16 based on the u velocity and grid spacing in the x direction. Table IV shows the numerical
parameters used for the algorithms. In Cases 1 and 3 the value of � required by the artificial
compressibility algorithm was chosen using the same trial and error method used for the channel
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Figure 15. Driven cavity geometry and boundary conditions.

Table IV. Driven cavity time step and numerical parameters, explicit time integration scheme.

Case Time step and numerical parameters Notes

Case 1 Artificial compressibility, �t = 0.0003, �= 60, �u = �v = �w = 0.915 Optimal value of �
Case 2 Artificial compressibility, �t = 0.0003, �= 4.25, �u = �v = �w = 0.915 Non-optimal value of �
Case 3 Artificial compressibility, �t = 0.0012, �= 4.25, �u = �v = �w = 0.915 Optimal value of �
Case 4 SCGS-PP, �t = 0.0003, �p = �u = �v = �w = 0.925
Case 5 SCGS-PP, �t = 0.0012, �p = �u = �v = �w = 0.925

flow. For the SCGS-PP algorithm, the same parameters �p, �u, �v, �w that were used for the channel
flow are used for this flow. Case 2 is included to demonstrate the effect of using the value of � that
is optimal for a time step of �t = 0.0012 for a simulation using a different time step of �t = 0.0003.
Using the value of �= 60, which is optimal for a time step of �t = 0.0003, for a simulation using
a time step of �t = 0.0012, results in a diverging solution for which no results could be obtained.
Eight iterations were used for a time step of �t = 0.0003 and 10 for a time step of �t = 0.0012.

Residual level: Figure 16 shows the history as a function of time of the average residual of the
continuity equation at a time step of �t = 0.0003. It can be seen that for the artificial compressibility
algorithm using the value of � that is optimal for a time step of �t = 0.0012 results in a residual
level that is an order of magnitude higher than that obtained using an optimal value of � for this
particular time step. Note that while the residual level decays differently than the channel flow it
also does not go to zero since the flow is unsteady.

Other measures of error: A measure of error that can be used for this flow is the mass flow
through a plane that cuts through the entire cavity. Due to the boundary conditions for this flow, the
mass flow through such a plane should be zero. For convenience, the plane chosen is the yz plane
in the centre of the cavity (at x = 0.5h). Figure 17 shows the behaviour of this integrated quantity
as a function of time. A dramatic increase in the error for the artificial compressibility algorithm
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Figure 16. Average residual of the continuity equation, driven cavity, explicit time
integration scheme (Equation (3)), �t = 0.0003.
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integration scheme (Equation (3)), �t = 0.0003.
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can be seen if a non-optimized value of � is used. Even when using the optimal value of � the
artificial compressibility algorithm has a significantly larger error than the SCGS-PP algorithm.

7.2.2. Implicit time integration scheme results. Time steps of �t = 0.003, 0.006 are used, with the
time step of �t = 0.006 corresponding to a maximum CFL number of approximately 0.85 based
on the v velocity and grid spacing in the y direction. Table V shows the numerical parameters
used for the algorithms. As for the channel flow, it is necessary to use smaller under-relaxation
factors for the implicit time integration scheme than for the explicit time integration scheme. As
demonstrated previously, using a value of � that is optimal for a smaller time step of �t = 0.003 in a
simulation with a larger time step of �t = 0.006, results in a solution that quickly diverges. Twenty-
four iterations were used for a time step of �t = 0.003 and 30 for a time step of �t = 0.006. For
computational efficiency, terms such as �/Gm, �i, j,k, �i, j,k/

1Gi, j,k�xui in Equations (14) and (19)
which depend on the solution and involve computationally expensive division operations, are
recomputed at the first iteration every 60 time steps.

Residual level: Figure 18 shows the history as a function of time of the average residual of the
continuity equation at a time step of �t = 0.003. It can be seen that for the artificial compressibility

Table V. Driven cavity time step and numerical parameters, implicit time integration scheme.

Case Time step and numerical parameters Notes

Case 10 Artificial compressibility, �t = 0.003, �= 2.6, �u = �v = �w = 0.85 Optimal value of �
Case 11 Artificial compressibility, �t = 0.003, �= 0.75, �u = �v = �w = 0.85 Non-optimal value of �
Case 12 Artificial compressibility, �t = 0.006, �= 0.75, �u = �v = �w = 0.85 Optimal value of �
Case 13 SCGS-PP, �t = 0.003, �p = �u = �v = �w = 0.7
Case 14 SCGS-PP, �t = 0.006, �p = �u = �v = �w = 0.7
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Figure 18. Average residual of the continuity equation, driven cavity, implicit time
integration scheme (Equation (5)), �t = 0.003.
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Figure 19. Mass flow through yz plane at x = 0.5h, driven cavity, implicit time
integration scheme (Equation (5)), �t = 0.003.

algorithm using the value of � that is optimal for a time step of �t = 0.006 results in a residual
level that is an order of magnitude higher than that obtained using an optimal value of � for this
particular time step of �t = 0.003. Note that the artificial compressibility algorithm, even when
using the optimal value of �, performs significantly worse than the SCGS-PP algorithm.

Other measures of error: Figure 19 shows the behaviour of the mass flow through the same
yz plane used with the explicit scheme as a function of time. A significantly larger error for the
artificial compressibility algorithm can be seen if a non-optimized value of � is used. Note that
even when using the optimal value of � the artificial compressibility algorithm has a larger error
than the SCGS-PP algorithm.

7.3. DNS of flow over a backward-facing step

The results are concluded by applying the SCGS-PP algorithm to DNS of flow over a backward-
facing step. This flow is a good test of a numerical method as it has a strong separation and
recirculation region. A schematic of the flow domain along with boundary conditions and dimen-
sions is given in Figure 20. Referring to Figure 20, L f = 5h, Lp = 4h, Lup = 10h and Ldown = 20.
All quantities are non-dimensionalized by the step height h and the freestream velocity U0. The
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Figure 20. Backward-facing step schematic.

Reynolds number based on freestream velocity and step height is 5000. A total of 8 465 792 grid
points are used in discretizing the domain using a Cartesian grid. Grid points are concentrated
near all three of the no-slip walls. Due to the large time and memory constraints the domain
is decomposed into 128 Cartesian zones and each zone is assigned to a processor on a parallel
computer.

7.3.1. Boundary conditions. Providing realistic inflow boundary conditions for a turbulent flow is
a challenging part of a simulation. The most physically realistic method is to trip the boundary layer
while extending the upstream domain far enough that the correct spatially developed boundary layer
results. In the present study the mean boundary layer is tripped by means of a row of hypercubes just
downstream of the inlet. In the study with which comparisons are made [29] (referred to as LMK
in figures) the inflow condition was provided by adding a fluctuating component with a prescribed
energy spectrum onto the mean profile. The hypercubes are represented by the immersed boundary
method [30, 31]. Due to the relatively coarse grid near the inlet, only the u velocity points were
defined as immersed boundary points. This coarse grid precludes any meaningful resolution of the
hypercubes, which simply function as generic obstacles in the flow field. At the inlet a spline fit of
the experimental data of [32–34] (referred to as JD in figures) was imposed on u and v while w

was set to zero. All velocity components were set to zero on all walls. At the freestream boundary
y = L f + h the conditions given by Equation (25) are imposed

�u
�y

= �w

�y
= v = 0 (25)

At the outlet a convective boundary condition given by Equation (26) is used for all three velocity
components

�u
�t

+Uc
�u
�x

= 0 (26)
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Figure 21. Mean u velocity at different x/h locations, flow past backward-facing step. JD corresponds to
References [32–34] while LMK corresponds to Reference [29].

In Equation (26) Uc is a constant chosen such that when multiplied by the area of the outflow plane
the result equals the total volume flow into the domain. This boundary condition allows structures
to pass out of the domain without generating significant reflections or gradients that could affect
events upstream.

7.3.2. Numerical issues. Five iterations of the SCGS-PP algorithm are done at each physical
time step. The physical time step is 0.0005, resulting in a maximum CFL number of ≈ 0.15 at
x = 1× 10−3, y = 2.3. The first three u velocity grid spacings in the x direction from the step face
are at 3.732× 10−3, 3.924× 10−3 and 4.125× 10−3. The first three v velocity grid spacings in the
y direction from the upstream wall are at 5.256× 10−3, 3.777× 10−3 and 6.342× 10−3. The first
three v velocity grid spacings in the x direction from the downstream wall are at 5.920× 10−3,
6.142× 10−3 and 6.371× 10−3. The step size in the z direction is 5.26× 10−3. The initial condi-
tions are u set equal to the freestream value upstream of the step and to Uc downstream of the step.
At all interior points v and w and p are set to zero. The explicit second-order accurate Adams–
Bashford time integration scheme given by Equation (4) is used for the convective and diffusive
terms instead of the explicit third-order accurate Adams–Bashford time integration scheme used
elsewhere in the present work.
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Figure 22. Mean v velocity at different x/h locations, flow past backward-facing step. JD corresponds to
References [32–34] while LMK corresponds to Reference [29].

7.3.3. Statistics. Because the flow field is homogenous in the z direction, spatial averaging is
carried out in this direction. The statistical averages of the various quantities are computed as a
running average. The solution is advanced for 180 000 time steps before statistics are collected. This
corresponds to travelling 90h at the freestream velocity. The statistics are averaged over 460 700
time steps. This corresponds to travelling 230.35h at the freestream velocity.

Excellent agreement with DNS data [29] and experimental data [32–34] is seen for the mean u
profile in Figure 21. In particular, the inlet boundary condition results in a correct u profile upstream
of the backward-facing step. The streamwise Reynolds stress component is shown in Figure 23.
The u′v′ component of the Reynolds stress tensor is shown in Figure 24. Results agree well with
[29, 32–34]. For v mean in Figure 22, a significant discrepancy exists between the experimental
data and the computational results of the present work and the computational results of [29]. The
DNS of both the present work and the DNS of [29] show good agreement with each other but only
qualitative agreement with the experimental data. Note that the values of v mean are relatively
small and it is possible that the uncertainties at these low magnitudes contribute to the observed
differences.

The mean reattachment length is found to be 6.278h. It is determined by locating the first pair
(in the x direction) of grid points closest to the wall where the sign of the mean streamwise velocity
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Figure 23. u′u′ at different x/h locations, flow past backward-facing step. JD corresponds to References
[32–34] while LMK corresponds to Reference [29].

changes. The mean reattachment length as measured by Jovic and Driver [32–34] is 6h. The value
computed by Le et al. [29] is 6.28h.

8. COMPUTATIONAL WORK AND EFFICIENCY

8.1. Computational work

The computational work involved in the application of an algorithm is an important factor in
weighing its usefulness. It is difficult to obtain an accurate measure of the computational work
involved in an algorithm which will be used on different types of computers, since this is a
function of the computer architecture, the problem dimensions, the programming methodology
and the optimizations performed by the compiler. However, a useful comparison can be made by
comparing the number of floating point operations required by each algorithm. Table VI lists the
ratio of floating point operations of SCGS-PP to artificial compressibility for different numbers of
iterations. The ratio differs depending on the number of iterations as at each physical time step there
are certain operations common to both algorithms which are performed once each physical time
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step. For a fair comparison, the values in Table VI are obtained using the same spatial convection
diffusion scheme for the explicit scheme as described for the implicit scheme. For the explicit
scheme the ratio asymptotes to 1.774 while for commonly used numbers of iterations it is less. The
ratio for the implicit scheme is smaller, asymptoting to 1.081, because the amount of additional
computational work consumed by the SCGS-PP algorithm is small relative to the computational
work consumed by the convection and diffusion terms. Table VII shows that the results of tests
of the actual wall clock time of the algorithms on different computers are close to that predicted
by comparing the number of floating point operations. The results in Table VII are obtained
by using Equation (3) and the spatial discretization scheme described in Section 2.3.3 for the
explicit time integration scheme and Equation (5) and the spatial discretization scheme described in
Section 2.3.1 for the implicit time integration scheme.

8.2. Computational efficiency

The above measure compares the computational work required to solve a time step with both
algorithms using the same number of iterations. However, the SCGS-PP algorithm has greater
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Figure 25. Computational efficiency: (a) channel flow explicit scheme; (b) channel flow implicit scheme;
(c) driven cavity explicit scheme; and (d) driven cavity implicit scheme.

computational efficiency since it reduces the residual more per iteration. Figure 25 compares
the computational efficiency of the algorithms in reducing the error in mass flow through the
planes described above for both the channel and driven-cavity flows. The threshold function in
Figure 25 is defined as the maximum of the absolute value of a function extending from x to
xmax, i.e. threshold[x]= max | f [x : xmax]| and is used to show when a function reaches and
remains below a value. The x axis in Figure 25 is the wall clock time on a single 2.4GHz Opteron
250 processor. For the explicit time integration scheme, the SCGS-PP algorithm is significantly
more computationally efficient than the artificial compressibility algorithm even when the artificial
compressibility algorithm uses the optimal value of �. Results are mixed for the implicit time
integration scheme if the artificial compressibility algorithm uses the optimal value of �, if, however,
it does not, then the SCGS-PP algorithm is much more computationally efficient.

8.2.1. Note on multi-grid. Multi-grid algorithms have seen much use in solvers for the Navier–
Stokes equations and arguably are the best general purpose solver for these equations. Therefore, it
is appropriate to address the use of our method within a multi-grid algorithm. Assuming appropriate
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Table VI. Ratio of floating point operations per real time
step of SCGS-PP to artificial compressibility.

# iterations Explicit Implicit

1 1.063 1.366
2 1.117 1.226
4 1.203 1.155
8 1.322 1.118

16 1.455 1.100
∞ 1.774 1.081

Table VII. Ratio of actual wall clock time per real time step of SCGS-PP to artificial compressibility
for a 65× 65× 65 grid on different computers.

IBM POWER4 1.45 GHz 2.4 GHz Opteron 250 Pentium(R) IV 43.2 GHz

# iterations Explicit Implicit Explicit Implicit Explicit Implicit

1 1.077 1.953 1.055 1.926 1.070 1.758
2 1.142 1.618 1.084 1.540 1.128 1.492
4 1.263 1.415 1.195 1.285 1.226 1.289
8 1.456 1.302 1.357 1.218 1.385 1.221

16 1.731 1.249 1.436 1.138 1.589 1.167
32 2.049 1.219 1.719 1.101 1.744 1.150

prolongation and restriction operators, the efficiency of a multi-grid algorithm depends on the error
reduction (or smoothing) properties of the underlying iterative method. We have demonstrated the
improved smoothing properties of our methods on a number of problems including one where we
analysed the smoothing properties in wave number space. This analysis of the methods in wave
number space shows that they reduce the appropriate error components for a multi-grid iterative
method (i.e. the high wave number component). However, there may be concern that the values
of the relaxation parameters may change on the coarser grids used in multi-grid methods. We
have used the same values for the relaxation parameters for three different problems (one set of
relaxation parameters for the explicit time integration scheme is used on all problems and another
set is used with the implicit time integration scheme on all problems) and have shown improved
error reduction properties over the artificial compressibility method. This shows the insensitivity
of the relaxation parameters used by our methods for a variety of problems and we believe this is
a much stronger test of the sensitivity of the relaxation parameters than that given by a multi-grid
method where the same problem is solved but on coarser grids. While multi-grid algorithms are
an excellent general purpose solver for the Navier–Stokes equations, their benefits are limited for
DNS problems such as we are concerned with in the present work. The reason lies in the form of
the error at each time step of an unsteady flow, where small CFL numbers are needed for temporal
accuracy in DNS. Since the previous time step is available as a starting guess in the iterative
process and as its difference from the solution (i.e. the error) lies almost entirely in the spatial high
wave number region (this being more so the smaller the CFL number) there is very little of the
error that can be represented on coarser grids. Therefore, the payoff from the computational cost
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associated with transferring the solution to coarser grids and iterating on these grids is very small
and it is frequently more efficient to perform all iterations on the fine grid where the error is well
represented.

9. CONCLUSION

A new algorithm (SCGS-PP) has been developed which is a simple modification of the arti-
ficial compressibility algorithm. This new algorithm eliminates the difficulty of choosing the
artificial compressibility parameter. This is a significant improvement as the artificial compressibil-
ity parameter is difficult to choose as it can vary four orders of magnitude depending on the flow
and the physical time step of the simulation. This artificial compressibility parameter is strictly a
numerical artefact and in no way affects the physics of the flow. While the artificial compressibility
algorithm can perform well if a proper choice of the artificial compressibility parameter is made,
improper choices lead either to slow convergence or divergence of the solution. For the new algo-
rithm the choice of the relaxation parameters is straightforward, and the same values can be used to
provide robust convergence for a range of application problems. For two very different flows, using
both explicit and implicit time integration schemes, the same values of the relaxation parameters
are used with the SCGS-PP algorithm while the artificial compressibility algorithm requires values
of the artificial compressibility parameter that vary by almost two orders of magnitude. In addition
the convergence rate in various metrics of the SCGS-PP algorithm is much better than the artifi-
cial compressibility algorithm. Unlike the SCGS algorithm, the new algorithm is easily parallelized
making it suitable for large-scale calculations such as DNS which require use of parallel computers.
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